Brainwave Classification Using Covariance-Based Data Augmentation
نویسندگان
چکیده
منابع مشابه
Data Augmentation for Plant Classification
Data augmentation plays a crucial role in increasing the number of training images, which often aids to improve classification performances of deep learning techniques for computer vision problems. In this paper, we employ the deep learning framework and determine the effects of several data-augmentation (DA) techniques for plant classification problems. For this, we use two convolutional neura...
متن کاملEnhanced Image Classification With Data Augmentation Using Position Coordinates
In this paper we propose the use of image pixel position coordinate system to improve image classification accuracy in various applications. Specifically, we hypothesize that the use of pixel coordinates will lead to (a) Resolution invariant performance. Here, by resolution we mean the spacing between the pixels rather than the size of the image matrix. (b) Overall improvement in classification...
متن کاملData Augmentation in Emotion Classification Using Generative Adversarial Networks
It is a difficult task to classify images with multiple class labels using only a small number of labeled examples, especially when the label (class) distribution is imbalanced. Emotion classification is such an example of imbalanced label distribution, because some classes of emotions like disgusted are relatively rare comparing to other labels like happy or sad. In this paper, we propose a da...
متن کاملAnatomical Data Augmentation For CNN based Pixel-wise Classification
In this work we propose a method for anatomical data augmentation that is based on using slices of computed tomography (CT) examinations that are adjacent to labeled slices as another resource of labeled data for training the network. The extended labeled data is used to train a U-net network for a pixel-wise classification into different hepatic lesions and normal liver tissues. Our dataset co...
متن کاملSynthetic Data Augmentation using GAN for Improved Liver Lesion Classification
In this paper, we present a data augmentation method that generates synthetic medical images using Generative Adversarial Networks (GANs). We propose a training scheme that first uses classical data augmentation to enlarge the training set and then further enlarges the data size and its diversity by applying GAN techniques for synthetic data augmentation. Our method is demonstrated on a limited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3040286